Spectral geometries on a compact metric space
نویسندگان
چکیده
منابع مشابه
On the Conformal Gauge of a Compact Metric Space
In this article we study the Ahlfors regular conformal gauge of a compact metric space (X, d), and its conformal dimension dimAR(X, d). Using a sequence of finite coverings of (X, d), we construct distances in its Ahlfors regular conformal gauge of controlled Hausdorff dimension. We obtain in this way a combinatorial description, up to bi-Lipschitz homeomorphisms, of all the metrics in the gaug...
متن کاملDynamical distance as a semi-metric on nuclear conguration space
In this paper, we introduce the concept of dynamical distance on a nuclear conguration space. We partition the nuclear conguration space into disjoint classes. This classification coincides with the classical partitioning of molecular systems via the concept of conjugacy of dynamical systems. It gives a quantitative criterion to distinguish dierent molecular structures.
متن کاملQuantum isometry group of a compact metric space
We give a definition of isometric action of a compact quantum group on a compact metric space, generalizing the definition given by Banica for finite metric spaces, and prove the existence of the universal object in the category of compact quantum groups acting isometrically on a given compact metric space.
متن کاملA compact space decomposition for effective metric indexing
The metric space model abstracts many proximity search problems, from nearest-neighbor classifiers to textual and multimedia information retrieval. In this context, an index is a data structure that speeds up proximity queries. However, indexes lose their efficiency as the intrinsic data dimensionality increases. In this paper we present a simple index called list of clusters (LC), which is bas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: St. Petersburg Mathematical Journal
سال: 2019
ISSN: 1061-0022,1547-7371
DOI: 10.1090/spmj/1571